Data Distillation: Towards Omni-Supervised Learning
نویسندگان
چکیده
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lowerbounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations. We argue that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging realworld data. Our experimental results show that in the cases of human keypoint detection and general object detection, state-of-the-art models trained with data distillation surpass the performance of using labeled data from the COCO dataset alone.
منابع مشابه
Multiple Information Sources Cooperative Learning
Many applications are facing the problem of learning from an objective dataset, whereas information from other auxiliary sources may be beneficial but cannot be integrated into the objective dataset for learning. In this paper, we propose an omni-view learning approach to enable learning from multiple data collections. The theme is to organize heterogeneous data sources into a unified table wit...
متن کاملUnifying distillation and privileged information
Distillation (Hinton et al., 2015) and privileged information (Vapnik & Izmailov, 2015) are two techniques that enable machines to learn from other machines. This paper unifies the two into generalized distillation, a framework to learn from multiple machines and data representations. We provide theoretical and causal insight about the inner workings of generalized distillation, extend it to un...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملOMNI-Prop: Seamless Node Classification on Arbitrary Label Correlation
If we know most of Smith’s friends are from Boston, what can we say about the rest of Smith’s friends? In this paper, we focus on the node classification problem on networks, which is one of the most important topics in AI and Web communities. Our proposed algorithm which is referred to as OMNIProp has the following properties: (a) seamless and accurate; it works well on any label correlations ...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.04440 شماره
صفحات -
تاریخ انتشار 2017